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Introduction





This document is a report on my experimentation with USDT tracing, particularly how it can be used to provide deeper insights into high-level languages like Ruby.


USDT - Userspace Statically Defined Tracepoints

USDT tracepoints are a powerful tool that gained popularity with dtrace.

In short, USDT tracepoints allow you to build-in diagnostics at key points of an application.

These can be used for debugging the application, measuring the performance characteristics, or analyzing any aspect of the runtime state of the program.

USDT tracepoints are placed within your code, and are executed when:


	They have been explicitly enabled.

	A tracing program, such as bpftrace or dtrace is connected to it.





Portability

Originally limited to BSD, Solaris, and other systems with dtrace, it is now simple to use USDT tracepoints on Linux. systemtap for linux has produced sys/sdt.h that can be used to add dtrace probes to linux applications written in C/C++, and for dynamic languages libstapsdt [1] can be used to add static tracepoints using whatever C extension framework is available for the language runtime. To date, there are wrappers for golang, Python, NodeJS, and a Ruby [2] wrapper under development.

bpftrace’s similarity to dtrace allows for USDT tracepoints to be accessible throughout the lifecycle of an application.

While more-and-more developers use Linux, there are still a large representation of Apple laptops for professional workstations. Many such enterprises also deploy production code to Linux systems. In such situations, developers can benefit from the insights that dtrace tracepoints have to offer them on their workstation as they are writing code. Once the code is ready to be shipped, the tracepoints can simply be left in the application. When it comes time to debug or analyze the code in production, the very same toolchain can be applied by translating dtrace’s .dt scripts into bpftrace’s `.bt scripts.



Performance

Critically, USDT tracepoints have little to no impact on performance if they are not actively being used, as it very simple to check if a static tracepoint has a probe attached to it.

This makes USDT tracepoints great to deploy surgically, rather than the conventional “always on” diagnostics. Logging data and emitting metrics do have some runtime overhead, and it is constant. The overhead that USDT tracepoints have is minimal, and limited to when they are actively being used to help answer a question about the behavior of an application.





bpftrace





bpftrace [3] is an emerging new tool that is takes advantage of on eBPF support added to version 4.1 of the linux kernel. While rapidly under development, it already supports much of dtrace’s functionality and is now hit a fairly stable state with most of the important features implemented, ready more or less for production use.

You can use bpftrace in production systems to attach to and summarize data from trace points similarly to with dtrace. You can run bpftrace programs by specifying a string with the -e flag, or by running a bpftrace script (conventionally ending in .bt) directly.

To quickly overview how bpftrace works:


	As awk treats lines, bpftrace treats probe events. You can select the type of event you want a probe to fire on, and define the probe in a stanza

	bpftrace probes generate LLVM IR that is converted to eBPF instructions

	The bpftrace executable reads data from eBPF maps to userspace in order to display, format, and summarize it

	eBPF programs are loaded into the kernel, and fire on uprobe, kprobe, tracepoint, and other events



For more details for bpftrace, check out its own reference guide [4] and this great article [5]. I started a separate report, annotating my contributions to bpftrace and explaining them, to share my insight of bpftrace internals [6].

There is an upcoming book [7] from Brendan Gregg that I covers a lot of great topics and uses of bpftrace which I highly recommend any reader pre-order, as it will certainly be the definitive book on eBPF for performance engineers.




Tracing Examples





For most examples, we’ll assume you have two terminals side-by-side:


	One to run the program you want to trace (referred to as tracee).

	One to run your bpftrace and observe the output.



Note that for development cases on OS X, dtrace usage is covered elsewhere.

The source and all of these scripts are available in the examples folder of this repository, or from submodules.


Listing tracepoints

To list tracepoints that you can trace:

bpftrace -l 'usdt:*' -p ${PROCESS}



Simple hello world

# frozen_string_literal: true

require 'ruby-static-tracing'

t = StaticTracing::Tracepoint.new('global', 'hello_world',
                                  Integer, String)
t.provider.enable

loop do
  if t.enabled?
    t.fire(StaticTracing.nsec, 'Hello world')
    puts 'Probe fired!'
  else
    puts 'Not enabled'
  end
  sleep 1
end


This is a basic ruby script that demonstrates the basic use of static tracepoints in Ruby, using the library ruby-static-tracing [2] Ruby gem, covered later.

This simplistic program will loop indefinitely, printing Not Enabled every second. This represents the Ruby program going on it’s merry way, doing what it’s supposed to be doing - pretend that it is running actual application code. The application isn’t spending any time executing probes, all it is doing is checking if the probe is enabled. Since the probe isn’t enabled, it continues with business as usual. The cost of checking if a probe is enabled is extraordinarily low, ~5 micro seconds).

[image: probetest gif]

This example:


	Creates a provider implicitly through it’s reference to ‘global’, and indicates that it will be firing off an Integer and a String to the tracepoint.

	Registering the tracepoint is like a function declaration - when you fire the tracepoint later, the fire call must match the signature declared by the tracepoint.

	We fetch the the provider that we created, and enable it.

	Enabling the provider loads it into memory, but the tracepoint isn’t enabled until it’s attached to.



Then, in an infinite loop, we check to see if our tracepoint is enabled, and fire it if it is.

When we run helloworld.rb, it will loop and print:

Not enabled
Not enabled
Not enabled

One line about every second. Not very interesting, right?

When we run our tracing program though:

bpftrace -e 'usdt::global:hello_nsec
         { printf("%lld %s\n", arg0, str(arg1))}' -p $(pgrep -f helloworld.rb)

Or, using a script:

bpftrace ./helloworld.bt -p $(pgrep -f helloworld.rb)

helloworld.bt:

usdt::global:hello_nsec
{
  printf("%lld %s\n", arg0, str(arg1))
}


We’ll notice that the output changes to indicate that the probe has been fired:

Not enabled
Probe fired!
Probe fired!
Probe fired!

And, from our bpftrace process we see:

Attaching 1 probe...
55369896776138 Hello world
55370897337512 Hello world
55371897691043 Hello world

Upon interrupting our bpftrace with Control+C, the probe stops firing as it is no longer enabled.

This demonstrates:


	How to get data from ruby into our bpftrace using a tracepoint.

	That probes are only enabled when they are attached to.

	How to read integer and string arguments.

	Basic usage of bpftrace with this gem.



In subsequent examples, none of these concepts are covered again.



Aggregation functions

While the hello world sample above is powerful for debugging, it’s basically just a log statement.

To do something a little more interesting, we can use an aggregation function.

bpftrace can generate linear and log2 histograms on map data. Linear histograms show the same data that is used to construct an ApDex[8]. This type of tracing is good for problems like understanding request latency.

For this example, we’ll use randist.rb to analyze a pseudo-random distribution of data.

#!/usr/bin/env ruby

require 'ruby-static-tracing'

t = StaticTracing::Tracepoint.new('global', 'randist', Integer)
t.provider.enable

r = Random.new

loop do
  t.fire(r.rand(100))
end


The example should fire out random integers between 0 and 100. We’ll see how random it actually is with a linear histogram, bucketing the results into steps of 10:

bpftrace -e 'usdt::global:randist
            {@ = lhist(arg0, 0, 100, 10)}' -p $(pgrep -f ./randist.rb)
Attaching 1 probe...

@:
[0, 10)      817142 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[10, 20)     815076 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[20, 30)     815205 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[30, 40)     814752 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[40, 50)     815183 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[50, 60)     816676 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[60, 70)     816470 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[70, 80)     815448 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[80, 90)     816913 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[90, 100)    814970 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |


There are similar aggregation functions [4] for max, mean, count, etc that can be used to summarize large data sets - check them out!



Latency distributions

This example will profile the function call that we use for getting the current monotonic time in nanoseconds:

StaticTracing.nsec

Under the hood, this is just calling a libc function to get the current time against a monotonic source. This is how we calculate the latency in wall-clock time. Since we will be potentially running this quite a lot, we want it to be fast!

For this example, we’ll use nsec.rb script to compute the latency of this call and fire it off in a probe.

#!/usr/bin/env ruby

require 'ruby-static-tracing'

t = StaticTracing::Tracepoint.new('global', 'nsec_latency', Integer)
t.provider.enable

loop do
  s = StaticTracing.nsec
  StaticTracing.nsec
  f = StaticTracing.nsec
  t.fire(f-s)
  sleep 0.001
end


Attaching to it with a log2 histogram, we can see that it clusters within a particular latency range:

bpftrace -e 'usdt::global:nsec_latency
            {@ = hist(arg0)}' -p $(pgrep -f ./nsec.rb)
Attaching 1 probe...

@:
[256, 512)            65 |                                                    |
[512, 1K)            162 |@@                                                  |
[1K, 2K)            3647 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[2K, 4K)            3250 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@      |
[4K, 8K)               6 |                                                    |
[8K, 16K)              0 |                                                    |
[16K, 32K)            12 |                                                    |
[32K, 64K)             2 |                                                    |


Let’s zoom in on that with a linear histogram to get a better idea of the latency distribution:

bpftrace -e 'usdt::global:nsec_latency
            {@ = lhist(arg0, 0, 3000, 100)}' -p $(pgrep -f ./nsec.rb)
Attaching 1 probe...

@:
[300, 400)         1 |                                                    |
[400, 500)        33 |@                                                   |
[500, 600)        50 |@@                                                  |
[600, 700)        49 |@@                                                  |
[700, 800)        42 |@@                                                  |
[800, 900)        21 |@                                                   |
[900, 1000)       15 |                                                    |
[1000, 1100)       9 |                                                    |
[1100, 1200)      11 |                                                    |
[1200, 1300)       4 |                                                    |
[1300, 1400)      16 |                                                    |
[1400, 1500)       9 |                                                    |
[1500, 1600)       7 |                                                    |
[1600, 1700)       8 |                                                    |
[1700, 1800)      70 |@@@                                                 |
[1800, 1900)     419 |@@@@@@@@@@@@@@@@@@@@@                               |
[1900, 2000)     997 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[2000, 2100)     564 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                       |
[2100, 2200)      98 |@@@@@                                               |
[2200, 2300)      37 |@                                                   |
[2300, 2400)      30 |@                                                   |
[2400, 2500)      36 |@                                                   |
[2500, 2600)      46 |@@                                                  |
[2600, 2700)      86 |@@@@                                                |
[2700, 2800)      74 |@@@                                                 |
[2800, 2900)      42 |@@                                                  |
[2900, 3000)      26 |@                                                   |
[3000, ...)       35 |@                                                   |


We can see that most of the calls are happening within 1700-2200 nanoseconds, which is pretty blazing fast, around 1-2 microseconds. Some are faster, and some are slower, representing the long-tails of this distribution, but this can give us confidence that this call will complete quickly.





Adding USDT support to Ruby






ruby-static-tracing

While USDT tracepoints are conventionally defined in C and C++ applications with a preprocessor macro, systemtap has created their own library for sdt tracepoints, which implement the same API as dtrace, on Linux. A wrapper around this, libstapsdt[1] is used to generate and load tracepoints in a way that can be used in dynamic languages like Ruby.

ruby-static-tracing is a gem that demonstrates the powerful applications of USDT tracepoints. It wraps libstapsdt for Linux support, and libusdt for Darwin / OS X support. This allows the gem to expose the same public Ruby api, implemented against separate libraries with specific system support. Both of these libraries are vendored-in, and dynamically linked via RPATH modifications. On Linux, libelf is needed to build and run libstapsdt, on Darwin, libusdt is built as a dylib and loaded alongside the ruby_static_tracing.so app bundle.

ruby-static-tracing implements wrappers for libstapsdt through C extensions. The scaffold / general design of ruby-static-tracing is based on the semian gem, and in the same way that Semian supports helpers to make it easier to use, we hope to mimic and take inspiration many of the same patterns to create tracers. Credit to the Semian authors Scott Francis [9] and Simon Hørup Eskildsen [10] for this design as starting point.

In creating a tracepoint, we are calling the C code:

VALUE
tracepoint_initialize(VALUE self, VALUE provider, VALUE name, VALUE vargs) {
  VALUE cStaticTracing, cProvider, cProviderInst;
  static_tracing_tracepoint_t *tracepoint = NULL;
  const char *c_name_str = NULL;
  int argc = 0;

  c_name_str = check_name_arg(name);
  check_provider_arg(provider); // FIXME should only accept string
  Tracepoint_arg_types *args = check_vargs(&argc, vargs);

  /// Get a handle to global provider list for lookup
  cStaticTracing = rb_const_get(rb_cObject, rb_intern("StaticTracing"));
  cProvider = rb_const_get(cStaticTracing, rb_intern("Provider"));
  cProviderInst = rb_funcall(cProvider, rb_intern("register"), 1, provider);

  // Use the provider to register a tracepoint
  SDTProbe_t *probe =
      provider_add_tracepoint_internal(cProviderInst, c_name_str, argc, args);
  TypedData_Get_Struct(self, static_tracing_tracepoint_t,
                       &static_tracing_tracepoint_type, tracepoint);

  // Stare the tracepoint handle in our struct
  tracepoint->sdt_tracepoint = probe;
  tracepoint->args = args;

  return self;
}


You can see that the tracepoint will register a provider for itself if it hasn’t happened already, allowing for “implicit declarations” of providers on their first reference.

And in firing a tracepoint, we’re just wrapping the call in libstapsdt:

  case 1:
    probeFire(res->sdt_tracepoint, args[0]);
    break;
  case 2:
    probeFire(res->sdt_tracepoint, args[0], args[1]);
    break;
  case 3:
    probeFire(res->sdt_tracepoint, args[0], args[1], args[2]);
    break;
  case 4:
    probeFire(res->sdt_tracepoint, args[0], args[1], args[2], args[3]);
    break;
  case 5:
    probeFire(res->sdt_tracepoint, args[0], args[1], args[2], args[3], args[4]);
    break;
  case 6:
    probeFire(res->sdt_tracepoint, args[0], args[1], args[2], args[3], args[4],
              args[5]);


and the same for checking if a probe is enabled:

VALUE
tracepoint_enabled(VALUE self) {
  static_tracing_tracepoint_t *res = NULL;
  TypedData_Get_Struct(self, static_tracing_tracepoint_t,
                       &static_tracing_tracepoint_type, res);
  return probeIsEnabled(res->sdt_tracepoint) == 1 ? Qtrue : Qfalse;
}


In general, all of the direct provider and tracepoint functions are called directly through these C-extensions, wrapping around libstapsdt [1].

So to understand what happens when we call a tracepoint, we will need to dive into how libstapsdt works, to explain how we’re able to probe Ruby from the kernel.



libstapsdt





This library was written by Matheus Marchini [11] and Willian Gaspar [12], and provides a means of generating elf notes in a format compatible to DTRACE macros for generating elf notes on linux.

For each provider declared, libstapsdt will create an ELF file that can be loaded directly into ruby’s address space through dlopen. As a compiler would normally embed these notes directly into a C program, libstapsdt matches this output format exactly. Once all of the tracepoints have been registered against a provider, it can be loaded into the ruby process’s address space through a dlopen call on a file descriptor for a temporary (or memory-backed) file containing the ELF notes.

For each tracepoint that we add to each provider, libstapsdt will inject assembly for the definition of a function called _funcStart. This function is defined in an assembly file. You might be cringing at the thought of working with assembly directly, but this definition is quite simple:

_funcStart:
  nop
  nop
  nop
  nop
  ret


It simply inserts four NOP instructions, followed by a RET. In case you don’t speak assembly, this translates to instructions that say to “do nothing, and then return”.

The address of this blob of assembly is used as the address of the function probe._fire in libstapsdt. So, each probe is calling into a memory region that we’ve dynamically loaded into memory, and the addresses of these probes can be computed by reading the elf notes on these generated stubs.

To understand this better, we’ll dive into how libstapsdt works. This will take us all the way from the Ruby call, to down inside the kernel.



Examining the dynamically loaded ELF





For our ruby process with a loaded provider, we can see the provider in the address space of the process:

cat /proc/22205/maps | grep libstapsdt:global


7fc624c3b000-7fc624c3c000 r-xp [...] 9202140   /memfd:libstapsdt:global (deleted)
7fc624c3c000-7fc624e3b000 ---p [...] 9202140   /memfd:libstapsdt:global (deleted)
7fc624e3b000-7fc624e3c000 rw-p [...] 9202140   /memfd:libstapsdt:global (deleted)


The left-most field is the process memory that is mapped to this library. Note that it appears 3 times, for the different permission modes of the memory (second column). The number in the center is the inode associated with our memory image, and it is identical for all of them because they are all backed by the same memory-only file descriptor. This is why, to the very right, we see (deleted) - the file descriptor doesn’t actually exist on the filesystem at the address specified.

This is because we are using a memory-backed file descriptor to store the ELF notes. The value shown here for /memfd:[...] is a special annotation for file descriptors that have no backing file and exist entirely in memory. We do this so that we don’t have to clean up the generated ELF files manually.

In examining the file descriptors for this process, we find that one of them matches the name and apparent path of this file memory mapped segment:

$ readlink -f /proc/22205/fd/*
/dev/pts/11
/dev/pts/11
/dev/pts/11
/proc/22205/fd/pipe:[9202138]
/proc/22205/fd/pipe:[9202138]
/proc/22205/fd/pipe:[9202139]
/proc/22205/fd/pipe:[9202139]
/memfd:libstapsdt:global (deleted)
/dev/null
/dev/null

It happens to be at the path /proc/22205/fd/7. If we read our elf notes for this path, we get what we expect:

readelf --notes /proc/22205/fd/7


Displaying notes found in: .note.stapsdt
  Owner                 Data size       Description
  stapsdt              0x00000039       NT_STAPSDT (SystemTap probe descriptors)
    Provider: global
    Name: hello_nsec
    Location: 0x0000000000000280, Base: 0x0000000000000340, Semaphore: 0x0000000000000000
    Arguments: 8@%rdi -8@%rsi
  stapsdt              0x0000002e       NT_STAPSDT (SystemTap probe descriptors)
    Provider: global
    Name: enabled
    Location: 0x0000000000000285, Base: 0x0000000000000340, Semaphore: 0x0000000000000000
    Arguments: 8@%rdi


And, if we just read the memory space directly using the addresses for our ELF blob earlier:

readelf --notes /proc/22205/map_files/7fc624c3b000-7fc624c3c000


Displaying notes found in: .note.stapsdt
  Owner                 Data size       Description
  stapsdt              0x00000039       NT_STAPSDT (SystemTap probe descriptors)
    Provider: global
    Name: hello_nsec
    Location: 0x0000000000000280, Base: 0x0000000000000340, Semaphore: 0x0000000000000000
    Arguments: 8@%rdi -8@%rsi
  stapsdt              0x0000002e       NT_STAPSDT (SystemTap probe descriptors)
    Provider: global
    Name: enabled
    Location: 0x0000000000000285, Base: 0x0000000000000340, Semaphore: 0x0000000000000000
    Arguments: 8@%rdi


We see that it matches exactly!

Notice that the location of global:hello_nsec is 0x0280 in the elf notes.

Now we will use gdb to dump the memory for our program so that we can examine the hexadecimal of its address space.

sudo gdb --pid 22205
(gdb) dump memory unattached 0x7fc624c3b000 0x7fc624c3c000

hexdump -C unattached

00000230  00 00 00 00 00 00 00 00  14 00 00 00 10 00 07 00  |................|
00000240  20 01 20 00 00 00 00 00  00 00 00 00 00 00 00 00  | . .............|
00000250  00 5f 5f 62 73 73 5f 73  74 61 72 74 00 5f 65 64  |.__bss_start._ed|
00000260  61 74 61 00 5f 65 6e 64  00 65 6e 61 62 6c 65 64  |ata._end.enabled|
00000270  00 68 65 6c 6c 6f 5f 6e  73 65 63 00 00 00 00 00  |.hello_nsec.....|
00000280  90 90 90 90 c3 90 90 90  90 c3 00 00 00 00 00 00  |................|
00000290  04 00 00 00 00 00 00 00  78 01 00 00 00 00 00 00  |........x.......|
000002a0  05 00 00 00 00 00 00 00  50 02 00 00 00 00 00 00  |........P.......|
000002b0  06 00 00 00 00 00 00 00  a8 01 00 00 00 00 00 00  |................|
000002c0  0a 00 00 00 00 00 00 00  2c 00 00 00 00 00 00 00  |........,.......|


Lets take a closer look at that address 0x280:

00000280  90 90 90 90 c3 90 90 90  90 c3 00 00 00 00 00 00  |................|


Those first 5 bytes look familiar! Recall the definition of _funcStart earlier:

_funcStart:
  nop
  nop
  nop
  nop
  ret


The assembly instruction NOP corresponds to 0x90 on x86 platforms, and the assembly instruction RET corresponds to 0xc3. So, we’re looking at the machine code for the stub function that we created with libstapsdt. This is the code that will be executed every time we call fire in userspace. The processor will run four NOP instructions, and then return.

As we can see in libstapsdt, the address of probe._fire is set from the location of the probe’s name, as calculated from the ELF offset:

  for(SDTProbeList_t *node=provider->probes; node != NULL; node = node->next) {
    fireProbe = dlsym(provider->_handle, node->probe.name);

    // TODO (mmarchini) handle errors better when a symbol fails to load
    if ((error = dlerror()) != NULL) {
      sdtSetError(provider, sharedLibraryOpenError, provider->_filename,
                  node->probe.name, error);
      return -1;
    }

    node->probe._fire = fireProbe;
  }


So this is what the memory space looks like where we’ve loaded our ELF stubs, and we can see how userspace libstapsdt operations work.

For instance, the code that checks if a provider is enabled:

int probeIsEnabled(SDTProbe_t *probe) {
  if(probe->_fire == NULL) {
    return 0;
  }
  if(((*(char *)probe->_fire) & 0x90) == 0x90) {
    return 0;
  }
  return 1;
}


It is simply checking the memoryspace to see if the address of the function starts with a NOP instruction (0x90).

Now, if we attach to our program with bpftrace, we’ll see the effect that attaching a uprobe to this address will have.

Dumping the same memory again with gdb:

00000230  00 00 00 00 00 00 00 00  14 00 00 00 10 00 07 00  |................|
00000240  20 01 20 00 00 00 00 00  00 00 00 00 00 00 00 00  | . .............|
00000250  00 5f 5f 62 73 73 5f 73  74 61 72 74 00 5f 65 64  |.__bss_start._ed|
00000260  61 74 61 00 5f 65 6e 64  00 65 6e 61 62 6c 65 64  |ata._end.enabled|
00000270  00 68 65 6c 6c 6f 5f 6e  73 65 63 00 00 00 00 00  |.hello_nsec.....|
00000280  cc 90 90 90 c3 90 90 90  90 c3 00 00 00 00 00 00  |................|
00000290  04 00 00 00 00 00 00 00  78 01 00 00 00 00 00 00  |........x.......|
000002a0  05 00 00 00 00 00 00 00  50 02 00 00 00 00 00 00  |........P.......|
000002b0  06 00 00 00 00 00 00 00  a8 01 00 00 00 00 00 00  |................|
000002c0  0a 00 00 00 00 00 00 00  2c 00 00 00 00 00 00 00  |........,.......|


We see that the first byte of our function has changed!

00000280  cc 90 90 90 c3 90 90 90  90 c3 00 00 00 00 00 00  |................|


Where we previously had a function that did NOP NOP NOP NOP RET, we now have the new instruction 0xCC, which on x86 platforms is the “breakpoint” instruction known as int3.

When our enabled check runs now, it will see that the bytes at the start of the function are not a NOP, and are INT3 instead. Now that our function is enabled, our code will allow us to call probe._fire.

We can pass up to 6 arguments when firing the probe. The code in libstapsdt simply passes every possibly arg count from a variadic list signature using a switch statement:

  switch(probe->argCount) {
    case 0:
      ((void (*)())probe->_fire) ();
      return;
    case 1:
      ((void (*)())probe->_fire) (arg[0]);
      return;
    case 2:
      ((void (*)())probe->_fire) (arg[0], arg[1]);
      return;
    case 3:
      ((void (*)())probe->_fire) (arg[0], arg[1], arg[2]);
      return;
    case 4:
      ((void (*)())probe->_fire) (arg[0], arg[1], arg[2], arg[3]);
      return;
    case 5:
      ((void (*)())probe->_fire) (arg[0], arg[1], arg[2], arg[3], arg[4]);
      return;
    case 6:
      ((void (*)())probe->_fire) (arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
      return;


When the address is called, the arguments passed in will be pushed onto the stack for this function call. This is how our probe is able to read arguments - by examining the address space of the caller’s stack.


int3 (0xCC), NOP (0x90) and uprobes

When the probe is fired, the kernel begins its trap handler. We can see this by running a trace of the kernel’s trap handler while we attach our probe:

$ bpftrace -e 'kprobe:is_trap_insn { printf("%s\n", kstack) }'
Attaching 1 probe...

        is_trap_insn+1
        install_breakpoint.isra.12+546
        register_for_each_vma+792
        uprobe_apply+109
        trace_uprobe_register+429
        perf_trace_event_init+95
        perf_uprobe_init+189
        perf_uprobe_event_init+65
        perf_try_init_event+165
        perf_event_alloc+1539
        __se_sys_perf_event_open+401
        do_syscall_64+90
        entry_SYSCALL_64_after_hwframe+73

We can see that attaching the uprobe via the perf event is what causes the probe to be enabled, and this is visible to the userspace process.

When an enabled probe is fired, the trap handler is called.

int3 is a special debugging/breakpoint instruction with opcode 0xCC. When a uprobe is enabled, it will overwrite the memory at the probe point with this single-byte instruction, and save the original byte for when execution is resumed. Upon executing this instruction, the uprobe is triggered and the handler routine is executed. Upon completion of the handler routine, the original assembly is executed.

As we showed above, the address where we place the uprobe is actually in the mapped address space of the generated ELF binary, and a NOP instruction (0x90) is all we are overwriting.

So, in order to check if a tracepoint is enabled, we just check the address of our tracepoint to see if it contains a NOP instruction. If it does, then the tracepoint isn’t enabled. If it doesn’t, then a uprobe has placed a 0xCC instruction here, and we know to execute our tracepoint logic.

Upon firing the probe, libstapsdt will actually execute the code at this address, letting the kernel “take the wheel” briefly, to collect the trace data.

This will execute our eBPF program that collects the tracepoint data and buffers it inside the kernel, then hand control back to our userspace Ruby process.


[image: eBPF handler injection from uprobe]eBPF handler injection from uprobe

Diagram credit [13].



USDT read arguments

Here we can see how arguments are pulled off the stack by bpftrace.

Its call to bcc’s bcc_usdt_get_argument builds up an argument struct:

  argument->size = arg.arg_size();
  argument->valid = BCC_USDT_ARGUMENT_NONE;
  if (arg.constant()) {
    argument->valid |= BCC_USDT_ARGUMENT_CONSTANT;
    argument->constant = *(arg.constant());
  }
  if (arg.deref_offset()) {
    argument->valid |= BCC_USDT_ARGUMENT_DEREF_OFFSET;
    argument->deref_offset = *(arg.deref_offset());
  }
  if (arg.deref_ident()) {
    argument->valid |= BCC_USDT_ARGUMENT_DEREF_IDENT;
    argument->deref_ident = arg.deref_ident()->c_str();
  }
  if (arg.base_register_name()) {
    argument->valid |= BCC_USDT_ARGUMENT_BASE_REGISTER_NAME;
    argument->base_register_name = arg.base_register_name()->c_str();
  }
  if (arg.index_register_name()) {
    argument->valid |= BCC_USDT_ARGUMENT_INDEX_REGISTER_NAME;
    argument->index_register_name = arg.index_register_name()->c_str();
  }


These functions are implemented using platform-specific assembly to read the arguments off of the stack.

We can see that the special format string for the argument in the ELF notes, eg 8@%rdi, is parsed to determine the address to read the argument from:

ssize_t ArgumentParser_x64::parse_expr(ssize_t pos, Argument *dest) {
  if (arg_[pos] == '$')
    return parse_number(pos + 1, &dest->constant_);

  if (arg_[pos] == '%')
    return parse_base_register(pos, dest);

  if (isdigit(arg_[pos]) || arg_[pos] == '-') {
    pos = parse_number(pos, &dest->deref_offset_);
    if (arg_[pos] == '+') {
      pos = parse_identifier(pos + 1, &dest->deref_ident_);
      if (!dest->deref_ident_)
        return -pos;
    }
  } else {
    dest->deref_offset_ = 0;
    pos = parse_identifier(pos, &dest->deref_ident_);
    if (arg_[pos] == '+' || arg_[pos] == '-') {
      pos = parse_number(pos, &dest->deref_offset_);
    }
  }


This how each platform is able to parse out the argument notation, to know where and how to pull the data out of the callstack.






USDT tracing in rails





A sample app [14] is used to explain the usage of tracers from ruby-static-tracing in Rails. This functionality was developed during a Hackdays event, with credit to Derek Stride [15], Matt Valentine-House [16], and Gustavo Caso [17].

We can add ruby-static-tracing [2] to our Rails enabling tracers in our application config:

require 'ruby-static-tracing'
require 'ruby-static-tracing/tracer/concerns/latency_tracer'

StaticTracing.configure do |config|
  config.add_tracer(StaticTracing::Tracer::Latency)
end

# Require the gems listed in Gemfile, including any gems
# you've limited to :test, :development, or :production.
Bundler.require(*Rails.groups)

module UsdtRails
  class Application < Rails::Application
    # Initialize configuration defaults for originally generated Rails version.
    config.load_defaults 5.2

    config.after_initialize { eager_load! }


Then, for the controller we want to trace we just need to include our latency tracer:

class SampleController < ApplicationController
  def all
    1000.times do
      ([] << 1) * 100_000
    end
  end

  def welcome
    100.times do
      ([] << 1) * 100_000
    end
  end

  def slow
    sleep(rand(0.5..1.5))
  end

  def random
    sleep(rand(0..0.9))
  end


  include StaticTracing::Tracer::Concerns::Latency
end


When we start up our app, we don’t actually see the tracepoints we’re looking for because they aren’t enabled by default. The following returns nothing:

$ bpftrace -l 'usdt:*:sample_controller:*' -p 10954

But, if we enable it with SIGPROF:

kill -SIGPROF 10954


We now see some output:

$ bpftrace -l 'usdt:*:sample_controller:*' -p 10954
usdt:/proc/10954/fd/21:sample_controller:random
usdt:/proc/10954/fd/21:sample_controller:welcome
usdt:/proc/10954/fd/21:sample_controller:slow
usdt:/proc/10954/fd/21:sample_controller:all


So we’ll attach to each of these, and print a histogram of the latency for each:

$ bpftrace -e 'usdt::sample_controller:*
               { @[str(arg0)] = lhist(arg1/1000000, 0, 2000, 100); }' -p 10954
Attaching 4 probes...


While the bpftrace is running, we’ll send some work to our sample app. We’ll fire up a script [18] to generate some traffic using wrk to each of the paths on this controller:

#!/bin/bash

CONNS=500
THREADS=500
DURATION=60

wrk -c${CONNS} -t${THREADS} -d${DURATION}s -s ./multi-request-json.lua http://127.0.0.1:3000


Once our traffic generation script exits, we’ll interrupt bpftrace from earlier to signal it to print and summarize the data it collected:


@[all]:
[100, 200)            18 |@@@@@@@@@@@@@@@@@                                   |
[200, 300)            54 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[300, 400)             1 |                                                    |

@[welcome]:
[0, 100)              73 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

@[random]:
[0, 100)               4 |@@@@@@@@@@@@@@@@                                    |
[100, 200)            11 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        |
[200, 300)            10 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            |
[300, 400)             5 |@@@@@@@@@@@@@@@@@@@@                                |
[400, 500)             8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |
[500, 600)             9 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                |
[600, 700)             8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |
[700, 800)            13 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[800, 900)             5 |@@@@@@@@@@@@@@@@@@@@                                |
[900, 1000)            1 |@@@@                                                |

@[slow]:
[500, 600)             8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |
[600, 700)            12 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[700, 800)             5 |@@@@@@@@@@@@@@@@@@@@@                               |
[800, 900)             8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |
[900, 1000)           10 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         |
[1000, 1100)           7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                      |
[1100, 1200)           6 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |
[1200, 1300)           6 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |
[1300, 1400)           3 |@@@@@@@@@@@@@                                       |
[1400, 1500)           6 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |
[1500, 1600)           1 |@@@@                                                |
[1600, 1700)           2 |@@@@@@@@                                            |

We can see the latency distribution, and the count of each request that fell into each bucket in the histogram.

This results line up with what wrk reports in its summary, and the request data that is logged by the rails console.




USDT examples in other dynamic languages





To demonstrate the portability of these same concepts, language-specific examples are provided here.

We will implement the same hello-word style of probe of each of them, and explain the differences and implementation of each language.


Ruby wrapper (featured elsewhere)

Above ruby-static-tracing[2] is featured more and examined heavily featured than other language runtimes, to illustrate the approach of adding libstapsdt to a dynamic runtime. Most of these same concepts apply to other languages.

For example, the Rails usage concept of tracers may be portable to Django. In the same way that ruby-static-tracing offers an abstraction above tracepoints, other runtimes could take similar approaches.

Ruby won’t be repeated here, and it is the author’s [19] bias and ignorance that Ruby is featured more heavily throughout the rest of the report.

If you have examples of more detailed uses of each of USDT tracepoints in any other languages missing here, please submit a pull request.



Python wrapper

To illustrate the point, we’ll how we’re able to add static tracepoints to python, which is similar to what we’ll be doing here with ruby.

Examining the python wrapper [11], we can see a sample probe program:

from time import sleep

import stapsdt

provider = stapsdt.Provider("pythonapp")
probe = provider.add_probe(
    "firstProbe", stapsdt.ArgTypes.uint64, stapsdt.ArgTypes.int32)
provider.load()


while True:
    print("Firing probe...")
    if probe.fire("My little probe", 42):
        print("Probe fired!")
    sleep(1)


see pypi to install



NodeJS wrapper

A similar example, in nodejs [11], a similar sample probe:

const USDT = require("usdt");

const provider = new USDT.USDTProvider("nodeProvider");
const probe1 = provider.addProbe("firstProbe", "int", "char *");
provider.enable();
let countdown = 10;

function waiter() {
  console.log("Firing probe...");
  if(countdown <= 0) {
    console.log("Disable provider");
    provider.disable();
  }
  probe1.fire(function() {
    console.log("Probe fired!");
    countdown = countdown - 1;
    return [countdown, "My little string"];
  });
}

setInterval(waiter, 750);


see npm to install



golang wrapper

For golang, our example comes from salp [20]:

var (
	probes = salp.NewProvider("salp-demo")

	p1 = salp.MustAddProbe(probes, "p1", salp.Int32, salp.Error, salp.String)
	p2 = salp.MustAddProbe(probes, "p2", salp.Uint8, salp.Bool)
)






libusdt





ruby-static-tracing [2] also wraps libusdt for Darwin / OSX support.

libusdt is the provider used for dtrace probes and many of the examples powering the libraries on [21]. This library supports a number of platforms other than Linux, including BSDs and Solaris, and really anything that ships with dtrace. It is worth examining dtrace, in order to see its impact on the design of Systemtap’s implementation of the original dtrace APIs.

The ELF notes used by systemtap, and libstapsdt are based on the DOF format:

 * DTrace Object Format (DOF)
 *
 * DTrace programs can be persistently encoded in the DOF format so that they
 * may be embedded in other programs (for example, in an ELF file) or in the
 * dtrace driver configuration file for use in anonymous tracing.  The DOF
 * format is versioned and extensible so that it can be revised and so that
 * internal data structures can be modified or extended compatibly.  All DOF
 * structures use fixed-size types, so the 32-bit and 64-bit representations
 * are identical and consumers can use either data model transparently.
 *
 * The file layout is structured as follows:
 *
 * +---------------+-------------------+----- ... ----+---- ... ------+
 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
 * | (file header) | (section headers) | section data | section data  |
 * +---------------+-------------------+----- ... ----+---- ... ------+
 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
 *
 * The file header stores meta-data including a magic number, data model for
 * the instrumentation, data encoding, and properties of the DIF code within.
 * The header describes its own size and the size of the section headers.  By
 * convention, an array of section headers follows the file header, and then
 * the data for all loadable sections and unloadable sections.  This permits
 * consumer code to easily download the headers and all loadable data into the
 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
 *
 * The section headers describe the size, offset, alignment, and section type
 * for each section.  Sections are described using a set of #defines that tell
 * the consumer what kind of data is expected.  Sections can contain links to
 * other sections by storing a dof_secidx_t, an index into the section header
 * array, inside of the section data structures.  The section header includes
 * an entry size so that sections with data arrays can grow their structures.


This notation is what describes to the Kernel tracing helper, in this case BCC, in order to determine the offsets of tracepoints within the memory space of the program being traced.

This format is widely used for debugging, and provides a debug faculty that is portable across frameworks, languages, and thanks to libstapsdt and libusdt.

Many programming runtimes already have USDT support via adherence to the existing dtrace USDT api.




kubectl-trace





// FIXME add citation for kubectl-trace crew

For production applications, kubectl-trace offers a convenient way to tap into our USDT tracepoints in production.

kubectl-trace will create a new kubernetes job, with a pod that runs bpftrace with the arguments provided by the user.

We can use kubectl-trace to apply a local bpftrace script or expression to bpftrace instance running alongside our application. This allows for very easy, targetted tracing in production.

// FIXME have an example of tracing a web app




Use in Local Development Environments






Using virtualization

If your development environment already runs on top of a hypervisor, such as Docker for Mac or Docker for Windows. However, at present these do not currently work with bpftrace, as the kernel is too old and doesn’t support the necessary features. You can (and I have) built an updated kernel using linuxkit [22], but while this does work it breaks the filesharing protocols used for bind-mounting with at least Docker for Mac.

If WSL comes with a new enough kernel or can load custom kernels, it may be able to play a similar role to xhyve [23] or hyperkit [24], but I have not tested against a Windows development environment or WSL.

Vagrant is another option, and a Vagrantfile is included as a reference implementation for how to bootstrap a minimal-enough VM to get the included Dockerfile to run.

The long and short of this approach is that it is good for if you are running your development application or dependencies inside of a linux VM, they can be traced with bpftrace provided that the kernel is new enough.



dtrace

Some environments may use a Linux VM, such as Docker for Mac, Docker For Windows, or Railgun [25], but run the actual application on the host OS, to provide a more native development experience.

In these cases, since the application isn’t running inside of Linux, they cannot be probed with bpftrace. Luckily, OS X and Darwin include dtrace, and it can be used out-of-the-box, for all of the functionality outlined here. For the discussion here, the focus will be mostly on dtrace on OS X.

When you run dtrace, it will complain about system integrity protection (SIP), which is an important security feature of OS X. Luckily, it doesn’t get in the way of how we implement probes here so the warning can be ignored.

You do, still, need to run dtrace as root, so have your sudo password ready or setuid the dtrace binary, as we do for our integration tests with a copy of the system dtrace binary.

dtrace can run commands specified by a string with the -n flag, or run script files (conventionally ending in .dt), with the -s flag.

[26]

Many simple dtrace scripts can be easily converted to bpftrace scripts see this cheatsheet [27], and vice-versa.



Listing tracepoints

To list tracepoints that you can trace:

On Darwin/OSX:

dtrace -l -P "${PROVIDER}${PID}"



Simple hello world

Recall from earlier, when we run helloworld.rb, it will loop and print:

Not enabled
Not enabled
Not enabled

One line about every second. Not very interesting, right?

With dtrace:

dtrace -q -n 'global*:::hello_nsec
             { printf("%lld %s\n", arg0, copyinstr(arg1)) }'

Or, with dtrace and a script:

dtrace -q -s helloworld.dt

helloworld.dt:

global*:::hello_nsec
{
  printf("%lld %s\n", arg0, copyinstr(arg1))
}




Aggregation functions

dtrace has equivalent support to bpftrace for generating both linear and log2 histograms.

Recall from the example using randist.rb above:

The example should fire out random integers between 0 and 100. We’ll see how random it actually is with a linear histogram, bucketing the results into steps of 10:

dtrace -q -n 'global*:::randist { @ = lquantize(arg0, 0, 100, 10) }'

 value  ------------- Distribution ------------- count    
   < 0 |                                         0        
     0 |@@@@                                     145456   
    10 |@@@@                                     145094   
    20 |@@@@                                     145901   
    30 |@@@@                                     145617   
    40 |@@@@                                     145792   
    50 |@@@@                                     145086   
    60 |@@@@                                     146287   
    70 |@@@@                                     146041   
    80 |@@@@                                     145331   
    90 |@@@@                                     145217   
>= 100 |                                         0        


There are other aggregation functions [28], similar to those offered by bpftrace.



Latency distributions

Recall the nsec example from earlier with bpftrace.

// FIXME add dtrace output for this example





Future Work






More tracers for ruby-static-tracing

We’d like to see more tracers in ruby-static-tracing, and hopefully user-contributed ones as well.

There is potential for exploration of other aspects of ruby internals through USDT probes as well, such as ObjectSpace insights.

Through parsing headers, you may be able to use ruby-static-tracing to augment distributed traces, if you can hook up to the right span.



Kernel vs userspace buffering

It may not end up being an issue, but if probes are enabled (and fired!) persistently and frequently, the cost of the int3 trap overhead may become significant.

uprobes allow for buffering trace event data in kernel space, but lttng-ust provides a means to buffer data in userspace [29]. This eliminates the necessity of the int3 trap, and allows for buffering trace data in the userspace application rather than the kernel. This approach could be used to aggregate events and perform fewer trap interrupts, draining the userland buffers during each eBPF read-routine.

While lttng-ust does support userspace tracing of C programs already [30], in a way analogously to sys/sdt.h, there is no solution for a dynamic version an lttng-ust binary. Like DTRACE macros, the lttng-ust macros are used to build the handlers, and they are linked-in as a shared object. In the same way that libstapsdt builds elf notes, it’s possible that a generator for the shared library stub produced by lttng-ust could be built. A minimum proof of concept would be a JIT compiler that compiles a generated header into an elf binary that can be dlopen’d to map it into the tracee’s address space.

Analyzing the binary of a lttng-ust probe may give some clues as to how to build a minimal stub dynamically, as libstapsdt has done for systemtap’s dtrace macro implementation.

Implementing userspace support in libraries like ruby-static-tracing [2] by wrapping lttng-ust could also offer a means of using userspace tracepoints for kernels not supporting eBPF, and an interesting benchmark comparison of user vs kernel space tracing, perhaps offering complementary approaches [29].



ustack helpers in bpftrace

To have parity in debugging capabilities offered by dtrace, bpftrace needs to support the concept of a ustack helper.

As languages like nodejs have done, bpftrace and bcc should offer a means of reading annotations for JIT language instructions, mapping them back to the source code that generated the JIT instruction. Examining the approach that Nodejs and Python have taken to add support for ustack helpers, we should be able to generalize a means for bpftrace programs to interpret annotations for JIT instructions. [31]



Ruby JIT notes

Although ruby has a JIT under development [32], it would be ideal to have the code to annotate instructions for a ustack helper could be added now.

If ruby’s JIT simply wrote out notes in a way that would be easily loaded into a BPF map to notes by instruction, the eBPF probe can just check against this map for notes, and then the ustack helper in bpftrace would simply need a means of specifying how this map should be read when it is displayed.

This would allow for stacktraces that span ruby space (via the annotated JIT instructions), C methods (via normal ELF parsing), and the kernel itself. Hopefully offering similar functionality to what has been provided to nodejs [33].

While not actually related to directly USDT, ustack helpers in bpftrace and support for a ruby ustack helper would be tremendously impactful at understanding the full execution profile of ruby programs.

Ruby JIT is experimental and possibly to enable with --jit flag in 2.6 and higher. Perhaps adding JIT notes in a conforming way early could help to increase visibility into JIT’d code?



BTF support

For introspecting userspace applications, BTF [34] looks like it will be useful for deeper analysis of a variety of typed-objects.

This may also free bpftrace and bcc from the need fork kernel headers, if the kernel type information can be read directly from BPF maps. For userspace programs, they may need to be compiled with BTF type information available, or have this information generated and loaded elsewhere somehow. This would be useful for analyzing the C components of language runtimes, such tracing the internals of the ruby C runtime, or analyzing C/C++ based application servers or databases.

BTF support requires a kernel v4.18 or newer, and the raw BTF documentation is available in the kernel sources [35]. Few userspace tools exist for BTF yet, but once it is added into tools like libbcc and bpftrace, a whole new realm of possibilities for debugging and tracing applications is possible.





USDT tracing alternatives





What distinguishes USDT tracepoints from a variety of other profiling and debugging tools is that other tools are generally either:


	Sampling profilers

	Trace every method invocation

	Require interrupting / stopping the program



This approach to tracing uses the x86 breakpoint instruction (INT3 0xCC) to trigger a kernel trap handler that will hand off execution to an eBPF probe. This use of breakpoints - injected by the kernel into the application via the kernel uprobe API, gives us the ability to perform targeted debugging on production systems.

Rather than printing to a character device (such as a log), or emitting a UDP or TCP based metric, USDT probes fire a kernel trap-handler. This allows for the kernel to do the work of collecting the local state, and summarizing it in eBPF maps.

breakpoints are only executed when there is an eBPF program installed and registered to handle the breakpoint. If there is nothing registered to the breakpoint, it is not executed. The overhead of this is nanoseconds.

For this reason, USDT tracepoints should be safe for use in production. The surgical precision that they offer in targeting memory addresses within the Ruby execution context, and low overhead, make them a powerful tool.

It is less for generating flamegraphs of an application as a whole, and more for drilling in deep on a particular area of code


ptrace API

The ptrace API is a standard implementation for spying on processes and has been used to build some of the standard and widely used debugging tools.


gdb

gdb can be used to debug applications, but generally requires a lot of overhead.

A colleague of mine, Scott Francis [9] wrote a very interesting blog post [36] about using gdb collect a core dump from a live production process, and analyze it out-of-band.



strace

strace is great for seeing what system calls a program is doing, but isn’t particularly useful for debugging Ruby code itself, as it is just an running userspace code to interpret source files into bytecode it can execute.

When Ruby goes to make a syscall for an IO request, or to make a lot of stdlib calls though, strace can be great at finding out if a Ruby process is having issues with system resources.

Strace is nice because you can attach and detach, follow forks, and generally try to get an idea of what a given process is interacting with the system for.

Used during startup, you can see all of the require statements that happen in order for a Ruby (and especially Rails) process to boot




rbspy

Rbspy [37] was written by Julia Evans [38] and taps into a Ruby process using process_vm_readv.

Rbspy is written in Rust, and basically finds the address within a Ruby process where the Stack trace is in order to read

/**
 * Initialization code for the profiler.
 *
 * The only public function here is `initialize(pid: pid_t)`, which returns a struct which you can
 * call `get_trace()` on to get a stack trace.
 *
 * Core responsibilities of this code:
 *   * Get the Ruby version
 *   * Get the address of the current thread
 *   * Find the right stack trace function for the Ruby version we found
 *   * Package all that up into a struct that the user can use to get stack traces.
 */
pub fn initialize(pid: pid_t) -> Result<StackTraceGetter, Error> {
    let (current_thread_addr_location, stack_trace_function) = get_process_ruby_state(pid)?;

    Ok(StackTraceGetter {
        process: Process{pid: Some(pid), source: pid.try_into_process_handle()?},
        current_thread_addr_location,
        stack_trace_function,
        reinit_count: 0,
    })
}


rbspy provides similar functionality to stackprof [39], as both are sampling profilers. The cool thing about rbspy is that you don’t the Ruby process doesn’t need to require a Gem to use it, since it works under the hood by fundamentally just copying data out of the Ruby address space using a syscall.



rbtrace

rbtrace [40] by Aman Gupta [41] uses Ruby’s tracing API to register its own event hooks with rb_add_event_hook.

static void
event_hook_install()
{
  if (!rbtracer.installed) {
    rb_add_event_hook(
      event_hook,
      RUBY_EVENT_CALL   | RUBY_EVENT_C_CALL |
      RUBY_EVENT_RETURN | RUBY_EVENT_C_RETURN
#ifdef RUBY_VM
      , 0
#endif
    );
    rbtracer.installed = true;
  }
}


This provides functionality similar to what is available through Ruby dtrace probes for external observation, but is done in userspace by requiring the rbtrace Gem, which sets up handlers upon receiving SIGURG.

rbtrace is an extremely powerful and valuable tool, and something that USDT support should aim far parity with.

Ultimately, rbtrace receives and handles every type of event while it has been enabled on a process, and is an event-processing driven architecture.



stackprof

stackprof [42] is another tool by Aman Gupta [41], but is a sampling profiler rather than an event processor.

Stackprof also uses Ruby tracing API for object tracing:

    if (mode == sym_object) {
	if (!RTEST(interval)) interval = INT2FIX(1);

	objtracer = rb_tracepoint_new(Qnil, RUBY_INTERNAL_EVENT_NEWOBJ, stackprof_newobj_handler, 0);
	rb_tracepoint_enable(objtracer);


But otherwise just registers a timer that will handle generating the profiling signal:

    } else if (mode == sym_wall || mode == sym_cpu) {
	if (!RTEST(interval)) interval = INT2FIX(1000);

	sa.sa_sigaction = stackprof_signal_handler;
	sa.sa_flags = SA_RESTART | SA_SIGINFO;
	sigemptyset(&sa.sa_mask);
	sigaction(mode == sym_wall ? SIGALRM : SIGPROF, &sa, NULL);

	timer.it_interval.tv_sec = 0;
	timer.it_interval.tv_usec = NUM2LONG(interval);
	timer.it_value = timer.it_interval;
	setitimer(mode == sym_wall ? ITIMER_REAL : ITIMER_PROF, &timer, 0);


This will trigger a handler when the timer fires:

static void
stackprof_signal_handler(int sig, siginfo_t *sinfo, void *ucontext)
{
    _stackprof.overall_signals++;
    if (rb_during_gc()) {
	_stackprof.unrecorded_gc_samples++;
	rb_postponed_job_register_one(0, stackprof_gc_job_handler, (void*)0);
    } else {
	rb_postponed_job_register_one(0, stackprof_job_handler, (void*)0);
    }
}


Which than records records the profiling data after a few calls:

void
stackprof_record_sample()
{
    int timestamp_delta = 0;
    int num;
    if (_stackprof.raw) {
	struct timeval t;
	struct timeval diff;
	gettimeofday(&t, NULL);
	timersub(&t, &_stackprof.last_sample_at, &diff);
	timestamp_delta = (1000 * diff.tv_sec) + diff.tv_usec;
    }
    num = rb_profile_frames(0, sizeof(_stackprof.frames_buffer) / sizeof(VALUE), _stackprof.frames_buffer, _stackprof.lines_buffer);
    stackprof_record_sample_for_stack(num, timestamp_delta);
}




Ruby


Tracing api

Most standard debuggers for ruby use ruby’s built-in tracing API. Ruby in fact already has DTRACE probes. What distinguishes ruby-static-tracing from these other approaches is that USDT tracepoints are compiled-in to the application. Ruby’s tracing API is an “all or nothing” approach, affecting the execution of every single method. With USDT tracing, trace data is collected at execution time when a tracing breakpoint instruction is executed.


	rotoscope [43]



Update: As of Ruby 2.6, it is now possible to do this thanks to [44]! You can see the official docs [45] for more details, but it’s currently a bit light as it’s a pretty new API.
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Works Researched

Some of these may have been cited or sourced indirectly, or were helpful in developing a grasp on the topics above, whether I’ve explicitly cited them or not. If you’d like to learn more, check out these other resources:


	Hacking Linux USDT with ftrace [53]

	USDT for reliable Userspace event tracing [54]

	We just got a new super-power! Runtime USDT comes to Linux [55]

	Seeing is Believing: uprobes and int3 Instruction [13]

	Systemtap UST wiki [56]

	Systemtap uprobe documentation [57]

	Linux tracing systems & how they fit together [58]

	Full-system dynamic tracing on Linux using eBPF and bpftrace [5]

	Awesome Dtrace - A curated list of awesome DTrace books, articles, videos, tools and resources [21]







Caveats

This is intended audience of this work is performance engineers, who wish to familiarize themselves with USDT tracing in both development (assuming Mac OS, Linux, or any platform that supports Vagrant, or Docker on a hypervisor with a new enough kernel), and production (assuming Linux, with kernel 4.14 or greater, ideally 4.18 or greater) environments.


Unmerged patches

The following demonstrates the abilities of unreleased and in some cases unmerged branches, so some of it may be subject to change.

The following pull requests are assumed merged in your local development environment:


	Support for writing ELF notes to a memfd backed file descriptor in libstapsdt for storing ELF notes in a memory-backed file, to avoid having to clean up ELF blobs accumulating in /tmp directory when a probed program exits uncleanly. Presently UNMERGED, but is used by ruby-static-tracing by default and will probably be the default for libstapsdt after some rework. This is only an issue if you find the need to build libstapsdt yourself, and want to use memory-backed file descriptors.

	Build ubuntu images and use them by default in kubectl trace for the kubectl trace examples here.



For the submodules of this repository, we reference these branches accordingly, until (hopefully) all are merged and have a point release associated with them.

You also must have a kernel that supports all of the bpftrace/bcc features. To probe userspace containers on overlayfs, you need kernel 4.18 or later. A minimum of kernel 4.14 is needed for many examples here.
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